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Abstract: State transition algorithm (STA) has been emerging as a novel stochastic method for global optimization in recent
few years. To make better understanding of continuous STA, a matlab toolbox for continuous STA has been developed. Firstly,
the basic principles of continuous STA are briefly described. Then, a matlab implementation of the standard continuous STA
is explained, with several instances given to show how to use to the matlab toolbox to minimize an optimization problem with
bound constraints. In the same while, a link is provided to download the matlab toolbox via available resources.
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1 Introduction

State transition algorithm (STA) [1-7] has been emerging
as a novel stochastic method for global optimization in re-
cent few years, and it has found applications in nonlinear
system identification, image segmentation, task assignment,
optimized controller design, water distribution networks, en-
ergy conservation optimization, optimized controller design,
signal processing, etc [§—15]. In state transition algorithm, a
solution to an optimization problem is considered as a state,
and an update of a solution can be regarded as a state tran-
sition. Unlike other population-based stochastic optimiza-
tion techniques, such as genetic algorithm, particle swarm
optimization, differential evolution, etc, the basic state tran-
sition algorithm is an individual-based optimization method.
Based on an incumbent best solution, a neighborhood with
special property will be formed automatically when using
certain state transformation operator. A variety of state trans-
formation operators, for example, rotation, translation, ex-
pansion, and axesion in continuous STA, or swap, shift, sym-
metry and substitute in discrete STA, are designed purposely
for both global and local search. On the basis of the neigh-
borhood, then, a sampling technique is used to generate a
candidate set, and the next best solution is updated by using
a selection technique based on previous best solution and the
candidate set. This process is repeated until some terminal
conditions are satisfied.

To make better understanding of continuous STA, a mat-
lab toolbox for continuous STA for global optimization prob-
lem with bound constraints has been developed. In this pa-
per, we will describe the standard continuous STA and its
corresponding matlab toolbox in detail. The remainder of
this paper is organized as follows. In Section 2, the basic
principles of continuous STA are given. Section 3 illustrates
how to use the matlab toolbox for continuous STA. Finally,
conclusion is drawn in Section 4.

2 The basic principles of continuous STA

In this paper, we focus on the continuous STA for the fol-
lowing global optimization problem

min /() 1)

xel)
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where ¢ = [x1, - ,2,] € R", Q = {x € R"|; < x; <
u;, i =1,---,n} C R™is aclosed and compact set, which
is usually composed of lower and upper bounds of x.

By referring to state space representation, on the basis of
current state xy, the unified form of generation of a new state
T4+ in state transition algorithm can be described as fol-
lows:

{ Tp1 = Apxy + Brug, 2

Ykt1 = f(®ri1) ’

where x, = [r1,72, -+ ,7,]T stands for a state, corre-
sponding to a solution of an optimization problem; wuy, is a
function of x;, and historical states; Ay, and B, are state tran-
sition matrices, which are usually some state transformation
operators; f(-) is the objective function or fitness function,
and yy is the function value at @y ;.

2.1 State transition operators

Using state space transformation for reference, four spe-
cial state transition operators are designed to generate con-
tinuous solutions for an optimization problem.

(1) Rotation transformation

Tpi1 = T + Q;erﬂk, (3)
nfjxy|2
where « is a positive constant, called the rotation factor;
R, € R™™, is a random matrix with its entries being
uniformly distributed random variables defined on the
interval [-1, 1], and || - ||2 is the 2-norm of a vector. This
rotation transformation has the function of searching in a
hypersphere with the maximal radius c.
(2) Translation transformation

Lk — Lk—1
zr — k12’
where [ is a positive constant, called the translation factor;
R; € R is a uniformly distributed random variable defined
on the interval [0,1]. The translation transformation has the
function of searching along a line from z;_; to xzj at the
starting point x;, with the maximum length £.

(3) Expansion transformation

Lp+1 = Tk + ﬁRt (4)

Tpt1 = Ty + YRk, Q)

where v is a positive constant, called the expansion factor;
R. € R™" is a random diagonal matrix with its entries
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obeying the Gaussian distribution. The expansion transfor-
mation has the function of expanding the entries in x, to the
range of [-o00, +0¢], searching in the whole space.

(4) Axesion transformation

Tpt1 = T + IR (6)

where 0 is a positive constant, called the axesion factor; R,
€ R™ " is a random diagonal matrix with its entries obey-
ing the Gaussian distribution and only one random position
having nonzero value. The axesion transformation is aiming
to search along the axes, strengthening single dimensional
search.

2.2 Regular neighborhood and sampling

For a given solution, a candidate solution is generated by
using one of the aforementioned state transition operators.
Since the state transition matrix in each state transformation
is random, the generated candidate solution is not unique.
Based on the same given point, it is not difficult to imag-
ine that a regular neighborhood will be automatically formed
when using certain state transition operator. In theory, the
number of candidate solutions in the neighborhood is infin-
ity; as a result, it is impractical to enumerate all possible
candidate solutions.

Since the entries in state transition matrix obey certain
stochastic distribution, for any given solution, the new candi-
date becomes a random vector and its corresponding solution
(the value of a random vector) can be regarded as a sample.
Considering that any two random state transition matrices
in each state transformation are independent, several times
of state transformation (called the degree of search enforce-
ment, SE for short) based on the same given solution are per-
formed for certain state transition operator, consisting of SE
samples. It is not difficult to find that all of the SE samples
are independent, and they are representatives of the neigh-
borhood. Taking the rotation transformation for example, a
total number of SE samples are generated in pseudocode as
follows

1: for i <— 1, SE do

2: State(:,7) < Best + amRrBeS‘c

3: end for
where Best is the incumbent best solution, and SE samples
are stored in the matrix State.

2.3 An update strategy

As mentioned above, based on the incumbent best solu-
tion, a total number of SE candidate solutions are generated.
A new best solution is selected from the candidate set by
virtue of the fitness function, denoted as newBest. Then, an
update strategy based on greedy criterion is used to update
the incumbent best as shown below

Best — {newBest, if f(newBest) < f(Best) -

Best, otherwise

2.4 Algorithm procedure of the basic continuous STA

With the state transformation operators, sampling tech-
nique and update strategy, the basic state transition algorithm
can be described by the following pseudocode

1: repeat

2 if o < ayi, then
3 Q 4 Qmax
4 end if
5 Best +— expansion(funfcn,Best,SE, 3,7)
6: Best < rotation(funfcn,Best,SE,a, 3)
7 Best < axesion(funfcn,Best,SE,3,6)
8: a<— z
9: until the specified termination criterion is met
As for detailed explanations, rotation(-) in above pseu-
docode is given for illustration purposes as follows

oldBest + Best
fBest < feval(funfcn,oldBest)
State <— op_rotate(Best,SE,«)
[newBest,fnewBest] < fitness(funfcn,State)
if fnewBest < fBest then
fBest «— fnewBest
Best <— newBest
State <— op_translate(oldBest,newBest,SE, 3)
[newBest,fnewBest]| < fitness(funfcn,State)
if fnewBest < fBest then
fBest «+— fnewBest
Best <— newBest
13: end if
14: end if
As shown in the above pseudocodes, the rotation factor
« is decreasing periodically from a maximum value auyax
to a minimum value oy, in an exponential way with base

R AN A i

_ ==
M =2

fc, which is called lessening coefficient. op_rotate(-) and

op-translate(-) represent the implementations of proposed
sampling technique for rotation and translation operators, re-
spectively, and fitness(-) represents the implementation of
selecting the new best solution from SE samples. It should
be noted that the translation operator is only executed when
a solution better than the incumbent best solution can be
found in the SE samples from rotation, expansion or axesion
transformation. In the basic continuous STA, the parame-
ter settings are given as follows: aupnax = 1, apin = le-4,
B=1y=1,0=1,SE=30,fc = 2.

When using the fitness(-) function, solutions in Stafe are
projected into 2 by using the following formula

Uj, if Ti; > U

x;, otherwise

€T, = li)

where u; and [; are the upper and lower bounds of x; respec-
tively.

3 A matlab implementation of the continuous STA

3.1 Installation

The STA toolbox was developed under mat-
lab 7.11.0 (R2010b), which can be download via
the  following link http://www.mathworks.
com/matlabcentral/fileexchange/
52498-state—-transition—-algorithm.

After unzipping the file “basic_STA.zip”, you will get the
following file list:

There exist a file folder named ““sta” (it contains the core
files of the STA toolbox), and several .m files as well as a
text document.
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sta File folder
2l ackley M File
™ Easom M File
= Goldstein_Price M File
= Griewank M File
= Michalewicz M File
= Rastrigin M File
u readme Text Document
™ Rosenbrock M File
= Schaffer M File
™ Schwefel M File
i Spherical M File
" Test_sta M File

Fig. 1: The unzipped basic_STA file list

3.2 The main file

By running the main file “Test_sta.m”, which is shown as
below

clear all

clc

currentFolder pwd;

addpath (genpath (currentFolder))

% parameter setting

warning (' off’)

SE 30; degree of search enforcement
Dim 10;% dimension

Range repmat ([-5.12;5.12],1,Dim);
Iterations le3;
tic

[Best, fBest,history]
Dim, Range, Iterations);

toc

Best

fBest

semilogy (history)

xlabel (' Iterations’),ylabel ('Fitness (log

%

STA (@Rastrigin, SE

you can get the following similar results

If you want to optimize another benchmark function (the
file list as shown in Fig. 1), for example, the Griewank func-
tion with 15 dimension, you just need to do the following
changes

%

Dim = 15;% dimension
Range repmat ([-600;600],1,Dim); $Srange
[Best, fBest,history] STA (RGriewank, SE,

Dim, Range, Iterations) ;

After that, by running the main file, you can get the fol-
lowing similar results as shown in Fig. 3.

4

) ")
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Elapzed time iz 0.686311 seconds.

Best =

1.0e-008 *

Columns 1 through 2

-0. 6730 0. 0080 0.0613 -0.2359 -0.0114
Columns 6 through 10
0.1088 0.1003 0.8083 0.0490 -0.5944
fBest =
]

15

1
20
lterations

25 30 25 40

Fig. 2: The results for the Rastrigin function (10D)

If you want to optimize a user-defined function, for exam-
ple, the following minimization problem:
min (xl — 1)2 + (1‘2 — 21‘1)2 + (333 — 3932)2
zcR3

s.t. —3S$1S3,—2§$2S2,—1§$3§1

Firstly, you have to create a m-file (for example with a
name ‘myfun’) as follows

function y
x1=x(:,1);
xX2=x(:,2);
x3=x(:,3);
y=(x1-1) .72+ (x2 — 2%x1) .72+ (x3-3*xx2).72;

myfun (x)

Then, you need to do the following changes of the main
file “Test_sta.m”

Dim = 3;% dimension

Range = [-3 -2 -1;3 2 1];%range
Iterations = lel;

tic

[Best, fBest, history]
Dim, Range, Iterations);

STA (@myfun, SE,



Elapsed time is 0.941310 seconds. Elapsed time iz 0.558033 seconds.

Best = Best =

1. 0e-007 =
0.3478 0. 3696 1. 0000

Columns 1 through 5
0.0309 0.0005 0.0000 -0.0290 -0.0193 fBest =

Columns 6 through 10 0.5435

—0.0002 -0.0203 -0.0105 0.0240 -0.0092

0.85
Columns 11 threough 15 0sh J
-0.0371 -0.0004 0.3285 -0.1284 0.0172 uisy ]
g o1t .
fBest = £ 085 .
06 B
0
0.55 B
10’ . . .
05 . ‘ ‘ . ‘ ‘ .
1 2 3 4 5 G T 8 a 10
[terations
1’ i,
Fig. 4: The results for the user-defined function (3D)
5 10 1
g " axesion M File
T 8 —
= expand M File
0" . | fitness M File
2 initialization M File
20 1 L L 1 1 L L
o 0 10 20 20 \ter;?om 50 60 70 80 : Op_a}(ES \_‘I.ﬂl Fi g
e M Fi
Fig. 3: The results for the Griewank function (15D) — op_expand M File
| Op_rotate M File
_ op_translate M File
toc =
Best " rotate M File
fBest e "
= STA M File
After that, by running the main file, you can get the fol-
lowing similar results as shown in Fig. 4.
3.3 The core files of STA Fig. 5: The file list in the file folder “sta
The core files of STA are contained in the file folder “sta”,
in which, the file list can be seen in Fig. 5.
. . . alpha = alpha_max;
By opening the file STA.m, the main algorithm procedure beta = 1:
of the basic continuous STA is shown as below !
gamma = 1;
function [Best, fBest,history]=STA (funfcn, delta = 1;
SE,Dim, Range, Iterations) fc = 2;
% parameter setting % initialization
alpha_max = 1; State = initialization (SE,Dim,Range) ;
alpha_min = le-4; [Best, fBest] = fitness (funfcn,State);
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[}

% iterative process
for iter = 1l:Iterations
if alpha < alpha_min
alpha = alpha_max;
end
[Best, fBest] = expand(funfcn, Best,
SE, Range, beta, gamma) ;
[Best, fBest] = rotate (funfcn,Best,
SE, Range, alpha,beta);
[Best, fBest] = axesion (funfcn, Best,
SE, Range,beta,delta);
history(iter) = fBest;
alpha = alpha/fc;
end

The function initialization is to generate SE uniformly
random initial points within the range (lower and upper
bounds), and fitness is to select the best candidate among
them using greedy criterion. They are shown in matlab codes
as below

function State=initialization(SE,Dim,
Range)

Pop_Lb = Range(l,:);

Pop_Ub = Range(2,:);

State = rand(SE,Dim) .*repmat

(Pop_Ub-Pop_Lb, SE, 1) trepmat (Pop_Lb, SE, 1) ;

function [Best, fBest] = fitness (funfcn,
State) % calculate fitness

fState = feval (funfcn, State);

[fGBest, g] = min(fState);

fBest = fGBest;

Best = State(g,:);

The functions op_rotate, op_translate, op-expand and
op-axes are the implementation of rotation, translation, ex-
pansion and axesion transformation respectively. The corre-
sponding matlab codes are listed as below

function y=op_rotate (Best, SE, alpha)
$rotation transformation

n = length (Best);

y = repmat (Best’,1,SE) +

alphax* (1/n/ (norm(Best) +eps) ) *

reshape (unifrnd(-1,1,SE*n,n)*Best’,n, SE) ;
y =y’

function y=op_translate (oldBest,newBest,
SE, beta)

$translation transfomration

n = length (oldBest) ;

y = repmat (newBest’,1,SE) +

beta/ (norm (newBest-oldBest) +eps)
*reshape (kron (rand(Sg, 1),
(newBest—-oldBest)’),n, SE);

y =y’

function y = op_expand (Best, SE, gamma)
$expansion transformation

n = length (Best);

y = repmat (Best’,1,SE) + gammax

normrnd (0, 1,n, SE) . xrepmat (Best’,1,SE));

14

(
Yy =Y s

function y = op_axes (Best, SE,delta)
% axesion transformation

n = length (Best);

A = zeros(n,SE);

index = randint (1,SE, [1,n]);

A(nx (0:SE-1)+index) = 1;

y = repmat (Best’,1,SE) + deltax
normrnd(0,1,n, SE) .*xA.*repmat (Best’, 1, SE) ;
y =v';

Each of these functions aims to generate SE random points
with special property based on incumbent best solution.

The functions expansion, rotation, axesion are to generate
random points and update incumbent best solution by using
corresponding state transition operators. Taking the expan-
sion function for example, it is shown as below

function [Best,fBest] = expand (funfcn,
oldBest, SE, Range, beta, gamma)
Pop_Lb=repmat (Range (1, :),SE,1);
Pop_Ub=repmat (Range (2, :),SE, 1) ;
Best = oldBest;
fBest = feval (funfcn,Best);
flag = 0;
State = op_expand(Best, SE, gamma) ;
changeRows = State > Pop_Ub;
State (find (changeRows) )
= Pop_Ub (find (changeRows) ) ;
changeRows = State < Pop_Lb;
State (find (changeRows) )
= Pop_Lb (find (changeRows) ) ;
[newBest, fGBest] = fitness (funfcn,State);
if fGBest < fBest

fBest = fGBest;

Best = newBest;
flag = 1;
else
flag = 0;
end
if flag ==
State =

op_translate (oldBest,Best, SE,beta) ;
changeRows = State > Pop_Ub;
State (find (changeRows) )
= Pop_Ub (find (changeRows) ) ;
changeRows = State < Pop_Lb;
State (find (changeRows) )
= Pop_Lb (find (changeRows) ) ;
[newBest, fGBest]
= fitness (funfcn, State);
if fGBest < fBest

fBest = fGBest;

Best = newBest;
end

end

and it can be found that the translation transformation is ex-
ecuted only when a better solution is found by the expansion
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transformation (flag =1).

The matlab codes of rotation function and axesion func-
tion are very similar to that of expansion function. The only
difference is that the subfunction op_expand is replaced by
op_rotate function or op_axes function. For more details of
the rotation and axesion functions, please refer to [16].

4 Conclusion

In this paper, a matlab toolbox for the standard continuous
STA is described, and several instances are given to show
how to use the STA toolbox. The core functions in the STA
toolbox are explained as well. An available link to download
the STA toolbox is also provided for reference.
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